Minnesota $6^{\text {th }}$ Grade MCAIII Mathematics Teacher Reflection Form

Have your students mastered these benchmarks?

Number and Operations

Algebra

Vocabulary evaluate, translate, function, coordinate grid, order of operations, simplify

Exceeds	Interprets equations and inequalities with multiple unknowns; understands that solving for a variable is not always the answer to the question.
Standard	Represents relationships between varying quantities using equations and inequalities, involving variables, graphs, and verbal descriptions; uses the properties of
Meets	Rendard Stithmetic as well as order of operations to generate equivalent expressions and to solve problems.
Partially Solves one-step problems in straightforward situations; uses computational facts, instead of equality, to find solutions; recognizes patterns (e.g., multiplicative and Meets additive patterns); recognizes relationships between varying quantities represented in tables, graphs, or verbal descriptions.	
Does Not Understands concept of variable as a place holder for an answer; recognizes patterns (additive) within lists of numbers; occasionally solves one-step problems in very Meet familiar situations (money); can find missing whole number based on number facts, not algebraic properties.	

Seff.
Reflection \#1
Unit \# \quad Benchmark
6.2.1.1

Understand that a variable can be used to represent a quantity that can change, often in relationship to another changing quantity. Use variables in various contexts.

		6.2 .1 .2	Represent the relationship between two varying quantities with function rules, graphs and tables; translate between any two of these representations.		
	6.2.2.1	Apply the associative, commutative and distributive properties and order of operations to generate equivalent expressions and to solve problems involving positive rational numbers.			
	6.2.3.1	Represent real-world or mathematical situations using equations and inequalities involving variables and positive rational numbers.	6.2.3.2	Solve equations involving positive rational numbers using number sense, properties of arithmetic and the idea of maintaining equality on both sides of the equation.	

Geometry and Measurement

Vocabulary	intersecting, vertical, adjacent, complementary, supplementary, straight, hypotenuse, leg, interior, exterior, diagonal, customary, metric, capacity		
Exceeds Standard	Determines area and perimeter of irregular shapes; determines surface area; understands and uses relationships between angles in geometric figures; converts among units of measure within a measurement system.		
Meets Standard	Recognizes and applies formulas for two- and three-dimensional figures; determines area and perimeter of irregular shapes when key is one-square unit; recognizes vocabulary associated with angles; knows basic conversions among units within a measurement system (e.g., feet to inches, centimeters to meters).		
Partially Meets	Calculates area and volume for basic figures (rectangles) when dimensions are provided; determines area and perimeter of irregular shapes by counting; calculates surface area when a net is provided; converts between feet and inches, hours and minutes.		
Does Not Meet	When determining area and perimeter of irregular shapes, counts by whole numbers (part is whole, diagonal is always one unit); associates 180 degrees with a triangle and 90 degrees with a right angle; finds one missing angle if given the other two in a triangle; given a problem requiring unit conversion, will multiply or divide.		
Self- Reflection \#1	Unit \#	Benchmark	Self- Reflection \#2
	6.3.1.1	Calculate the surface area and volume of prisms and use appropriate units, such as cm^{2} and cm^{3}. Justify the formulas used. Justification may involve decomposition, nets or other models.	
	6.3.1.2	Calculate the area of quadrilaterals. Quadrilaterals include squares, rectangles, rhombuses, parallelograms, trapezoids and kites. When formulas are used, be able to explain why they are valid.	
	6.3.1.3	Estimate the perimeter and area of irregular figures on a grid when they cannot be decomposed into common figures and use correct units, such as cm and cm^{2}.	
	6.3.2.1	Solve problems using the relationships between the angles formed by intersecting lines.	
	6.3.2.2	Determine missing angle measures in a triangle using the fact that the sum of the interior angles of a triangle is 180°. Use models of triangles to illustrate this fact.	
	6.3.2.3	Develop and use formulas for the sums of the interior angles of polygons by decomposing them into triangles.	
	6.3.3.1	Solve problems in various contexts involving conversion of weights, capacities, geometric measurements and times within measurement systems using appropriate units.	
	6.3.3.2	Estimate weights, capacities and geometric measurements using benchmarks in measurement systems with appropriate units.	

Data Analysis and Probability

Benchmarks that will be taught by the mid-January OLPA

Unit 1 -
Unit $2-$
Unit $3-$
Unit 4 - (taught in January)

HOW TO USE THE MCA TEACHER RELECTION FORMS
 Minnesota MCAIII Mathematics Teacher Reflection Form
 Have your students mastered these benchmarks? What is your evidence?

Directions: Take 20 minutes $2-5$ times a year to reflect on your student's mastery of grade level standards. All staff are highly encouraged to reflect one week prior to and within one week after all MCA testing dates (including OLPA). The questions on this sheet written in red are questions you can ask yourself as you use the reflection form.

Benchmarks that will be taught by the mid-January OLPA:

COMING SUMMER 2013
This is a list of benchmarks from the Focused Instruction Curriculum Guides that students should have mastered by the end of Semester 1.

