Grade MCA3 Standards, Benchmarks, Examples, Test Specifications \& Sampler Questions

Strand	Standard	No.	Benchmark (${ }^{\text {th }}$ Grade)	Sampler Item
Number \& Operation	Read, write, represent and compare positive rational numbers expressed as fractions, decimals, percents and	6.1.1.1	Locate positive rational numbers on a number line and plot pairs of positive rational numbers on a coordinate grid. (1) Item Specifications - Both axes must have the same scale - Items may require locating points on either axis - Vocabulary allowed in items: integer, x-axis, y-axis, horizontal axis, vertical axis, rational number, coordinate grid "and vocabulary given at previous grades" (\&vgapg.)	Plot the point $(4,5)$ on the coordinate grid. Click on the coordinate grid to plot the point.
MCA 14-18 Items Modified MCA 9-12 Items	ratios; write positive integers as products of factors; use these representations in real-world and mathematical situations. MCA 5-7 Items Modified MCA 4-7 Items	6.1.1.2	Compare positive rational numbers represented in various forms. Use the symbols <, = and >. (1) For example: $\frac{1}{2}>0.36$. Item Specifications - Vocabulary allowed in items: is greater than, is less than \&vgapg.	Which statement is true? A. $\frac{1}{6}=0.16$ B. $0.08=\frac{4}{5}$ C. $0.25<\frac{1}{4}$ D. $\frac{1}{3}>0.3$ Modified Example An inequality is shown. $x>0.2$ Which value for x makes the inequality true? A. $\frac{1}{2}$ B. $\frac{1}{5}$ C. $\frac{1}{10}$

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
		6.1.1.3	Understand that percent represents parts out of 100 and ratios to 100. (1) For example: 75% corresponds to the ratio 75 to 100, which is equivalent to the ratio 3 to 4 . Item Specifications - Allowable notation: 25%, 1/4, 1:4 - Percents must be between 1 and 100, inclusive - Vocabulary allowed in items: percent, ratio \&vgapg.	Riley has 200 stamps. - 35% are from Europe. - 10% are from Asia. - 20% are from Australia. The rest of the stamps are from North America. How many of Riley's stamps are from North America? A. 35 B. 65 C. 70 D. 130
		6.1.1.4	Determine equivalences among fractions, decimals and percents; select among these representations to solve problems. (1) For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $\$ 2.50$ an hour, because $\$ 2.50$ is $\frac{1}{10}$ or 10% of $\$ 25$. Item Specifications - Allowable notation: $50 \%, 1 / 4,0.95,0 . \overline{25}$ - Percents must be between 1 and 100 inclusive - Vocabulary allowed in items: vocabulary given at previous grades.	Which is equivalent to 0.04% ? A. $\frac{1}{4}$ B. $\frac{1}{25}$ C. $\frac{1}{400}$ D. $\frac{1}{2,500}$
		6.1.1.5	Factor whole numbers; express a whole number as a product of prime factors with exponents. (1) For example: $24=2^{3} \times 3$. Item Specifications - Prime factors are not greater than 13 - Numbers being factored are less than 1,000 - Vocabulary allowed in items: prime factor, prime factorization, exponent, power, base \&vgapg.	What is the prime factorization of 630 ? A. $2 \times 3 \times 5 \times 7$ B. $2 \times 3^{2} \times 5 \times 7$ C. $2 \times 3^{2} \times 35$ D. $2 \times 5 \times 7 \times 9$

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
		6.1.1.6	Determine greatest common factors and least common multiples. Use common factors and common multiples to calculate with fractions and find equivalent fractions. (1) For example: Factor the numerator and denominator of a fraction to determine an equivalent fraction. Item Specifications - Vocabulary allowed in items: greatest common factor, least common multiple \&vgapg.	What is the greatest common factor of 48 and 64? A. 2 B. 8 C. 16 D. 24 Modified Example Emma wants to add the 3 fractions shown. $\frac{1}{3}+\frac{1}{4}+\frac{1}{6}$ First, she needs to find the Least Common Multiple. What is the Least Common Multiple for these 3 fractions? A. 6 B. 12 C. 24
		6.1.1.7	Convert between equivalent representations of positive rational numbers. For example: Express $\frac{10}{7}$ as $\frac{7+3}{7}=\frac{7}{7}+\frac{3}{7}=1 \frac{3}{7}$. (1) Item Specifications - Conversions are limited to within a representation (e.g., $7 / 4=1 \frac{3}{4}$ and $3^{2}=3 \cdot 3$, not $0.5=1 / 2$) - Vocabulary allowed in items: exponent, integer \&vgapg.	Which is equivalent to 4^{3} ? A. 12 B. 48 C. 64 D. 81
	Understand the concept of ratio and its relationship to fractions and to the multiplication and division of whole numbers.	6.1.2.1	Identify and use ratios to compare quantities; understand that comparing quantities using ratios is not the same as comparing quantities using subtraction. (1) For example: In a classroom with 15 boys and 10 girls, compare the numbers by subtracting (there are 5 more boys than girls) or by dividing (there are 1.5 times as many boys as girls). The comparison using division may be expressed as a ratio of boys to girls (3 to 2 or $3: 2$ or 1.5 to 1). Item Specifications - Allowable ratio notation: $1 / 4,1$ to $4,1: 4$, 1 out of 4 - Vocabulary allowed in items: ratio \&vgapg.	Kelly makes 12 candles in 3 hours. Lee makes 6 candles in 1 hour. What is the difference in the numbers of candles they each make in 8 hours? A. 2 B. 8 C. 16 D. 48

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
	Use ratios to solve real-world and mathematical problems. MCA 2-4 Items Modified MCA 1-3 Items	6.1.2.2	Apply the relationship between ratios, equivalent fractions and percents to solve problems in various contexts, including those involving mixtures and concentrations. (1) For example: If 5 cups of trail mix contains 2 cups of raisins, the ratio of raisins to trail mix is 2 to 5. This ratio corresponds to the fact that the raisins are $\frac{2}{5}$ of the total, or 40% of the total. And if one trail mix consists of 2 parts peanuts to 3 parts raisins, and another consists of 4 parts peanuts to 8 parts raisins, then the first mixture has a higher concentration of peanuts. Item Specifications - Allowable ratio notation: $1 / 4,1$ to $4,1: 4,1$ out of $4,25 \%$ - Rates may be expressed using the word "per" - Vocabulary allowed in items: ratio, percent \&vgapg.	A paint color is made using 4 drops of red and 5 drops of blue for each 5 gallons of paint. How many gallons of paint are being colored when 45 drops of color are used? A. 9 B. 25 C. 45 D. 81
		6.1.2.3	Determine the rate for ratios of quantities with different units. (1) For example: 60 miles for every 3 hours is equivalent to 20 miles for every one hour (20 mph). Item Specifications - Allowable ratio notation: $1 / 4,1$ to $4,1: 4,1$ out of 4 - Rates may be expressed using the word "per" - Vocabulary allowed in items: rate, ratio, unit rate \&vgapg.	A bottle of soap costs $\$ 3.45$ for 64 ounces. What is the cost per ounce? A. $\$ 0.05$ B. $\$ 0.19$ C. $\$ 0.22$ D. $\$ 0.64$ Modified Example Sam's restaurant uses 30 pounds of flour every day. The restaurant is open 7 days per week. How much flour does the restaurant use in $\mathbf{2}$ weeks? A. 210 pounds B. 270 pounds C. 420 pounds
		6.1.2.4	Use reasoning about multiplication and division to solve ratio and rate problems. (1) For example: If 5 items cost $\$ 3.75$, and all items are the same price, then 1 item costs 75 cents, so 12 items cost $\$ 9.00$. Item Specifications - Allowable ratio notation: $1 / 4,1$ to $4,1: 4,1$ out of 4 - Rates may be expressed using the word "per" - Vocabulary allowed in items: rate, ratio \&vgapg.	Conor reads 3 pages every 4 minutes. At this rate, how many pages can he read in 30 minutes? Type your answer in the box. \square

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
	Multiply and divide decimals, fractions and mixed numbers; solve real-world and mathematical problems using arithmetic with positive rational numbers. MCA 5-7 Items Modified MCA 3-5 Items	6.1.3.1	Multiply and divide decimals and fractions, using efficient and generalizable procedures, including standard algorithms. (1.4) Item Specifications - Items must not have context - Vocabulary allowed in items: reciprocal \&vgapg.	Divide. $1 \frac{1}{10} \div 1 \frac{1}{5}$ A. $\frac{11}{12}$ B. $\frac{25}{33}$ C. $1 \frac{8}{25}$ D. $1 \frac{1}{2}$ $\frac{\text { Modified Example }}{\text { Multiply. }}$ 2.174×100 A. 217.4 B. 21.74 C. 0.02174
		6.1.3.2	Use the meanings of fractions, multiplication, division and the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions. (1.4) For example: Just as $\frac{12}{4}=3$ means $12=3 \times 4, \frac{2}{3} \div \frac{4}{5}=\frac{5}{6}$ means $\frac{5}{6} \times \frac{4}{5}=\frac{2}{3}$. Item Specifications - Assessed within 6.1.3.1 No Example Question on the State Sampler	(none)
		6.1.3.3	Calculate the percent of a number and determine what percent one number is of another number to solve problems in various contexts. (1.4) For example: If John has $\$ 45$ and spends $\$ 15$, what percent of his money did he keep? Item Specifications - Percents are not less than 1 - Percents over 100 are 110, 125, 150 and 200 - Vocabulary allowed in items: percent \&vgapg.	A company is printing 250 calendars. In 1 hour, 75 calendars are printed. What percent of the calendars are printed in 1 hour? A. 3% B. 3.3% C. 30% D. 33%
		6.1.3.4	Solve real-world and mathematical problems requiring arithmetic with decimals, fractions and mixed numbers. (1.4) Item Specifications - Items are limited to no more than two operations - Vocabulary allowed in items: reciprocal \&vgapg. No Example Question on the MCA3 State Sampler	Moditied Example How many pounds of fruit did Mr. Stevens buy altogether? A. $3 \frac{1}{3}$ B. $3 \frac{7}{16}$ C. $3 \frac{7}{8}$

Strand	Standard	No.	Benchmark (${ }^{\text {th }}$ Grade)	Sampler Item
		6.1.3.5	Estimate solutions to problems with whole numbers, fractions and decimals and use the estimates to assess the reasonableness of results in the context of the problem. (1.4) For example: The sum $\frac{1}{3}+0.25$ can be estimated to be between $\frac{1}{2}$ and 1 , and this estimate can be used to check the result of a more detailed calculation. Item Specifications - Assessed within 6.1.3. No Example Question on the State Sampler	(none)
Algebra	Recognize and represent relationships between varying quantities; translate from	6.2.1.1	Understand that a variable can be used to represent a quantity that can change, often in relationship to another changing quantity. Use variables in various contexts. (2.5) For example: If a student earns $\$ 7$ an hour in a job, the amount of money earned can be represented by a variable and is related to the number of hours worked, which also can be represented by a variable. Item Specifications - Allowable multiplication notation: $3 x, x y, 3 \cdot 4,3(4)$ - Equations will not contain exponents - Vocabulary allowed in items: evaluate \&vgapg.	An equation is shown. $j=7 k+5$ When the value of k increases by 2 , by what amount does the value of j increase? A. 2 B. 9 C. 12 D. 14
MCA 12-16 Items Modified MCA $8-11$ Items	one representation to another, use patterns, tables, graphs and rules to solve realworld and mathematical problems. MCA 4-5 Items Modified MCA 2-3 Items	6.2.1.2	Represent the relationship between two varying quantities with function rules, graphs and tables; translate between any two of these representations. (2.5) For example: Describe the terms in the sequence of perfect squares $t=1,4,9,16, \ldots$ by using the rule $t=n^{2}$ for $n=1,2,3,4, \ldots$. Item Specifications - Allowable multiplication notation: $3 x, x y, 3 \cdot 4,3(4)$ - Equations will not contain exponents - Vocabulary allowed in items: translate, function, coordinate grid \&vgapg.	A graph is shown. What is the equation of the line on the graph? OA. $y=x-1$ OB. $y=x+3$ C. C. $y=3 x+1$ $x \bigcirc$ D. $y=3 x-5$ Modified Example \qquad

Strand	Standard	No.	Benchmark (6 ${ }^{\text {th }}$ Grade)	Sampler Item
	Use properties of arithmetic to generate equivalent numerical expressions and evaluate expressions involving positive rational numbers. MCA 2-3 Items Modified MCA 1-2 Items	6.2.2.1	Apply the associative, commutative and distributive properties and order of operations to generate equivalent expressions and to solve problems involving positive rational numbers. (3) For example: $\frac{32}{15} \times \frac{5}{6}=\frac{32 \times 5}{15 \times 6}=\frac{2 \times 16 \times 5}{3 \times 5 \times 3 \times 2}=\frac{16}{9} \times \frac{2}{2} \times \frac{5}{5}=\frac{16}{9}$. Another example: Use the distributive law to write: $\frac{1}{2}+\frac{1}{3}\left(\frac{9}{2}-\frac{15}{8}\right)=\frac{1}{2}+\frac{1}{3} \times \frac{9}{2}-\frac{1}{3} \times \frac{15}{8}=\frac{1}{2}+\frac{3}{2}-\frac{5}{8}=2-\frac{5}{8}=1 \frac{3}{8} .$ Item Specifications - Allowable multiplication notation: $3 x, x y, 3 \cdot 4,3(4)$ - Items must not have context - Vocabulary allowed in items: order of operations, simplify \&vgapg.	Simplify. $4\left(\frac{1}{2}+\frac{3}{8}\right)-\frac{5}{8} \cdot 2$ A. $1 \frac{1}{8}$ B. 2 C. $2 \frac{1}{4}$ D. $5 \frac{3}{4}$ Modified Example An expression is shown. $\frac{220}{(4+6 \times 2)-9}$ What is the first step in simplifying the expression? A. 6×2 B. $4+6$ C. $\frac{220}{4}$
	Understand and interpret equations and inequalities involving variables and positive rational numbers. Use equations and inequalities to represent realworld and mathematical problems; use the idea of maintaining equality to solve equations. Interpret solutions in the original context. MCA 6-8 Items	6.2.3.1 ${ }^{\frac{F}{k}}$	Represent real-world or mathematical situations using equations and inequalities involving variables and positive rational numbers. (4) For example: The number of miles m in a k kilometer race is represented by the equation $m=0.62$ k. Item Specifications - Allowable multiplication notation: $3 x, x y, 3 \cdot 4,3(4), \mathrm{x}^{2}$ - <, > and = symbols are allowed - Vocabulary allowed in items: vocabulary given at previous grades.	Write an inequality that is true when $n=8$. Click and drag the number or symbol into the inequality. Modified Example A store sold $\$ 800.00$ in clothing last week. The store also spent n dollars for advertising last week. Which number sentence represents t, the total amount of money the store made last week? A. $800-n=t$ B. $800+n=t$ C. $n+t=800$

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
	Modified MCA 5-7 Items	6.2.3.2	Solve equations involving positive rational numbers using number sense, properties of arithmetic and the idea of maintaining equality on both sides of the equation. Interpret a solution in the original context and assess the reasonableness of results. (4) For example: A cellular phone company charges $\$ 0.12$ per minute. If the bill was $\$ 11.40$ in April, how many minutes were used? Item Specifications - Allowable multiplication notation: $3 x, x y, 3 \cdot 4,3(4)$ - Vocabulary allowed in items: vocabulary given at previous grades.	A phone company uses the equation $y=0.15 x+10$ to find y, the monthly charge for a customer sending x text messages. How many text messages are sent if the monthly charge is $\$ 77.50$? A. 10 B. 21 C. 450 D. 506 An equation is shown. $\frac{2}{3}=\frac{x}{18}$ What value for x makes the equation true? A. $6 \frac{2}{3}$ B. 12 C. 17
Geometry \& Measuremen MCA 10-12 Items	Calculate perimeter, area, surface area and volume of twoand threedimensional figures to solve real-world and	6.3.1.1	Calculate the surface area and volume of prisms and use appropriate units, such as cm^{2} and cm^{3}. Justify the formulas used. Justification may involve decomposition, nets or other models. (1.7) For example: The surface area of a triangular prism can be found by decomposing the surface into two triangles and three rectangles. Item Specifications - Vocabulary allowed in items: vocabulary given at previous grades	The surface area of a cube is 384 square inches. What is the volume of the cube? A. 8 cubic inches B. 16 cubic inches C. 256 cubic inches D. 512 cubic inches

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
$\begin{gathered} \text { Modified } \\ \text { MCA } \\ 7-9 \\ \text { Items } \end{gathered}$	mathematical problems. MCA 3-5 Items Modified MCA 3-4 Items	6.3.1.2	Calculate the area of quadrilaterals. Quadrilaterals include squares, rectangles, rhombuses, parallelograms, trapezoids and kites. When formulas are used, be able to explain why they are valid. (1.7) For example: The area of a kite is one-half the product of the lengths of the diagonals, and this can be justified by decomposing the kite into two triangles. Item Specifications - Congruent side marks (hash marks) may be used - Allowable notation: 3 square centimeters, $3 \mathrm{~cm} \mathrm{sq}, 3 \mathrm{~cm}^{2}$ - Vocabulary allowed in items: vocabulary given at previous grades.	A scale drawing of a kite is shown. What is the area of the kite? A. $28 \mathrm{~cm}^{2}$ B. $60 \mathrm{~cm}^{2}$ C. $96 \mathrm{~cm}^{2}$ D. $192 \mathrm{~cm}^{2}$ Modified Example A parallelogram is shown. What is the area of the parallelogram? A. 34 sq cm B. 48 sq cm C. 60 sq cm
		6.3.1.3	Estimate the perimeter and area of irregular figures on a grid when they cannot be decomposed into common figures and use correct units, such as cm and cm^{2}. (1.7) Item Specifications - Allowable notation: 3 square centimeters, $3 \mathrm{~cm} \mathrm{sq}, 3 \mathrm{~cm}^{2}$ - Vocabulary allowed in items: vocabulary given at previous grades	A heart shape is cut from a gridded piece of paper. What is the approximate area of the heart? - A. 50 square units OB. 70 square units C. 90 square units OD. 144 square units

Strand	Standard	No.	Benchmark (6 ${ }^{\text {th }}$ Grade)	Sampler Item
	Understand and use relationships between angles in geometric figures. MCA 3-5 Items Modified MCA	6.3.2.1	Solve problems using the relationships between the angles formed by intersecting lines. For example: If two streets cross, forming four corners such that one of the corners forms an angle of 120°, determine the measures of the remaining three angles. (1.7) Another example: Recognize that pairs of interior and exterior angles in polygons have measures that sum to 180°. Item Specifications - Allowable notation: $\angle A, \mathrm{~m} \angle A, \triangle A B C$ - Vocabulary allowed in items: intersecting, vertical, adjacent, complementary, supplementary, straight, hypotenuse, leg \&vgapg.	A rhombus is shown. What is $\mathrm{m} \angle 1$? A. 15° B. 75° C. 105° The rhombus is used to make a design. D. 150° Modified Example The figure shows supplementary angles. What is the measure of angle D ? A. 45° B. 135° C. 180°
	3-4 Items	6.3.2.2	Determine missing angle measures in a triangle using the fact that the sum of the interior angles of a triangle is 180°. Use models of triangles to illustrate this fact. (1.7) For example: Cut a triangle out of paper, tear off the corners and rearrange these corners to form a straight line. Another example: Recognize that the measures of the two acute angles in a right triangle sum to 90°. Item Specifications - Allowable notation: $\angle A, \mathrm{~m} \angle A, \triangle A B C$ - Vocabulary allowed in items: adjacent, complementary, supplementary, interior, exterior, hypotenuse, leg \&vgapg.	A triangle is shown. What is $\mathrm{m} \angle L$? A. 42° B. 45° C. 48° D. 138°

Strand	Standard	No.	Benchmark ($6^{\text {th }}$ Grade)	Sampler Item
		6.3.2.3	Develop and use formulas for the sums of the interior angles of polygons by decomposing them into triangles. (1.7) Item Specifications - Allowable notation: $\angle A, \mathrm{~m} \angle A, \triangle A B C$ - Vocabulary allowed in items: interior, diagonal \&vgapg.	In which shapes does the measure of $\angle K=40^{\circ}$? Cilik on the spases sou wanto sosect
	Choose appropriate units of measurement and use ratios to convert within measurement systems to solve real-world and mathematical problems. MCA 2-3 Items Modified MCA 1-2 Items	6.3.3.1	Solve problems in various contexts involving conversion of weights, capacities, geometric measurements and times within measurement systems using appropriate units. (1.5) Item Specifications - Vocabulary allowed in items: customary, metric, capacity \&vgapg.	Joleen bought 12 apples. Each apple weighed 1.8 ounces. How many pounds of apples did Joleen buy? A. 1.35 pounds B. 2.4 pounds C. 21.6 pounds D. 28.8 pounds
		6.3.3.2	Estimate weights, capacities and geometric measurements using benchmarks in measurement systems with appropriate units. (1.5) For example: Estimate the height of a house by comparing to a 6 -foot man standing nearby. Item Specifications - Vocabulary allowed in items: customary, metric, capacity \&vgapg.	A building has 9 windows. Each window is 5 feet tall. About how tall is the building? OA. 15 feet OB. 25 feet C. 40 feet OD. 45 feet Modified Example Which is a reasonable weight for a textbook? A. 0.03 pound B. 0.3 pound C. 3 pounds

\begin{tabular}{|c|c|c|c|c|}
\hline Strand \& Standard \& No. \& Benchmark (\(6^{\text {th }}\) Grade) \& Sampler Item \\
\hline \begin{tabular}{l}
Data \\
Analysis \& Probability \\
MCA \\
6-8
\end{tabular} \& Use probabilities to solve realworld and mathematical problems; represent probabilities using fractions, decimals and \& 6.4.1.1 \& \begin{tabular}{l}
Determine the sample space (set of possible outcomes) for a given experiment and determine which members of the sample space are related to certain events. Sample space may be determined by the use of tree diagrams, tables or pictorial representations. (2) \\
For example: A \(6 \times 6\) table with entries such as \((1,1),(1,2),(1,3), \ldots,(6,6)\) can be used to represent the sample space for the experiment of simultaneously rolling two number cubes. \\
Item Specifications \\
- Size of the sample space will not exceed 36 \\
- Vocabulary allowed in items: probability, outcome, tree diagram, event, random, sample space, combinations \&vgapg.
\end{tabular} \& \begin{tabular}{l}
Eli has a cube with sides numbered 1-6 and a spinner with 3 equal sections labeled \(\mathrm{A}, \mathrm{B}\), and C . He rolls the cube and spins the spinner. How many outcomes are possible? \\
Type your answer in the box. \\
Modified Example \\
The diagram shows the different menu options \\
at a restaurant. \\
How many different combinations of 1 main course, 1 vegetable, and 1 starch are possible? \\
A. 2 \\
-B. 9 \\
C. 24
\end{tabular} \\
\hline Modified MCA \(6-8\) Items \& \begin{tabular}{l}
percents. \\
MCA \\
6-8 Items \\
Modified \\
MCA \\
6-8 Items
\end{tabular} \& 6.4.1.2 \& \begin{tabular}{l}
Determine the probability of an event using the ratio between the size of the event and the size of the sample space; represent probabilities as percents, fractions and decimals between 0 and 1 inclusive. Understand that probabilities measure likelihood. (2) \\
For example: Each outcome for a balanced number cube has probability \(\frac{1}{6}\), and the probability of rolling an even number is \(\frac{1}{2}\). \\
Item Specifications \\
- Size of the sample space is no more than 100 \\
- Vocabulary allowed in items: probability, outcome, event, likely, unlikely, certain, impossible, ratio, random, sample space \&vgapg.
\end{tabular} \& \begin{tabular}{l}
Ryan has 25 tiles. The probability that he randomly chooses a green tile is \(12 \%\). Show how many of Ryan's tiles are green. Click on the tiles you want to select.

A spinner has equal-sized sections. Modified Example

A. $\frac{2}{8}$

8. $\frac{2}{6}$

c. $\frac{1}{3}$
\end{tabular}

\hline
\end{tabular}

