## $5^{\text {th }}$ Grade MCA3 Standards, Benchmarks, Examples, Test Specifications \& Sampler Questions

| Strand | Standard | No. | Benchmark ( ${ }^{\text {th }}$ Grade) | Sampler Item |
| :---: | :---: | :---: | :---: | :---: |
| Number \& Operation <br> MCA | Divide multidigit numbers; solve real-world and mathematical problems using arithmetic. <br> MCA <br> 6-8 Items <br> Modified MCA <br> 4-6 Items | 5.1.1.1 | Divide multi-digit numbers, using efficient and generalizable procedures, based on knowledge of place value, including standard algorithms. Recognize that quotients can be represented in a variety of ways, including a whole number with a remainder, a fraction or mixed number, or a decimal. (2) <br> For example: Dividing 153 by 7 can be used to convert the improper fraction $\frac{153}{7}$ to the mixed number $21 \frac{6}{7}$. <br> Item Specifications <br> - Dividends may not be more than 4 digits <br> - Divisors may not be more than 2 digits <br> - Fractional remainders are not required to be given in lowest terms <br> - Allowable division notation: , fraction bar <br> - Vocabulary allowed in items: remainder, "and vocabulary given at previous grades" (\&vgapg.) | Divide. $2,564 \div 8$ A. 32 r 4 B. 308 C. $320 \frac{1}{5}$ D. 320.5 <br> Modified Example Divide. $1,308 \div 6$ A. 201 B. 211 C. 218 |
| 18-22 Items Modified MCA 11-14 Items |  | 5.1.1.2 | Consider the context in which a problem is situated to select the most useful form of the quotient for the solution and use the context to interpret the quotient appropriately. (2) <br> For example: If 77 amusement ride tickets are to be distributed equally among 4 children, each child will receive 19 tickets, and there will be one left over. If $\$ 77$ is to be distributed equally among 4 children, each will receive $\$ 19.25$, with nothing left over. <br> Item Specifications <br> - Dividends may not be more than 4 digits <br> - Divisors may not be more than 2 digits <br> - Fractional remainders are not required to be given in lowest terms <br> - Items may require interpretation of when decimals should be rounded (e.g., with money) <br> - Vocabulary allowed in items: remainder, \&vgapg. | Jan has 500 pieces of paper. She prints as many copies as possible of a 16 -page report. How many pieces of paper are left? A. 4 B. 9 C. 25 D. 31 <br> Modified Example <br> A teacher had 157 books to share equally with 7 classes. <br> He gave as many books as possible to each class. <br> How many books were left over? A. 3 B. 22 C. 150 |
|  |  | 5.1.1.3 | Estimate solutions to arithmetic problems in order to assess the reasonableness of results. (2) <br> Item Specifications <br> - Assessed within 5.1.1.4 <br> No Example Question on the State Sampler | (none) |


| Strand | Standard | No. | Benchmark ( $5^{\text {th }}$ Grade) | Sampler Item |
| :---: | :---: | :---: | :---: | :---: |
|  |  | C | Solve real-world and mathematical problems requiring addition, subtraction, multiplication and division of multi-digit whole numbers. Use various strategies, including the inverse relationships between operations, the use of technology, and the context of the problem to assess the reasonableness of results. (2) <br> For example: The calculation $117 \div 9=13$ can be checked by multiplying 9 and 13 . <br> Item Specifications <br> - Solutions are less than $1,000,000$ <br> - Multiplication is limited to no more than three-digit numbers by no more than three-digit numbers <br> - Division is limited to no more than four-digit numbers by no more than twodigit numbers <br> - Fractional remainders are not required to be given in lowest terms <br> - Vocabulary allowed in items: vocabulary given at previous grades | A theater sold 1,500 tickets. There were 852 adult tickets and the rest were child tickets. Each adult ticket was $\$ 7.00$ and each child ticket was $\$ 3.50$. How much money was made in ticket sales? <br> Type your answer in the box. <br> \$ $\square$ <br> (and) <br> A bookcase has 4 shelves. The bottom shelf has 10 books. Each of the other shelves has 5 more books than the shelf below it. How many books are in the bookcase? A. 25 B. 40 C. 55 D. 70 |
|  | Read, write, represent and compare fractions and decimals; recognize and write equivalent fractions; | + ${ }^{\text {frer }}$ + | Read and write decimals using place value to describe decimals in terms of groups from millionths to millions. (1.6) <br> For example: Possible names for the number 0.0037 are: <br> 37 ten thousandths <br> 3 thousandths +7 ten thousandths; <br> a possible name for the number 1.5 is 15 tenths. <br> Item Specifications <br> - Vocabulary allowed in items: place value, \&vgapg. | Which number has a 5 in the ten thousandths place? A. 0.20815 B. 0.30256 C. 0.40571 D. 0.50098 |
|  | fractions and decimals; use fractions and decimals in realworld and mathematical situations. | 5.1.2.2 | Find 0.1 more than a number and 0.1 less than a number. Find 0.01 more than a number and 0.01 less than a number. Find 0.001 more than a number and 0.001 less than a number. (1.6) <br> Item Specifications <br> - Vocabulary allowed in items: place value, \&vgapg. | Johan's race time was 45.03 seconds. Kyle's race time was 0.1 second less than Johan's time. What was Kyle's race time? A. 44.03 seconds B. 44.93 seconds C. 45.13 seconds D. 45.14 seconds |


| Strand | Standard | No. | Benchmark (5 ${ }^{\text {th }}$ Grade) | Sampler Item |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MCA <br> 6-8 Items <br> Modified <br> MCA <br> 3-4 Items | ; | Order fractions and decimals, including mixed numbers and improper fractions, and locate on a number line. <br> (1.6) <br> For example: Which is larger 1.25 or $\frac{6}{5}$ ? <br> Another example: In order to work properly, a part must fit through a 0.24 inch wide space. If a part is $\frac{1}{4}$ nch wide, will it fit? <br> Item Specifications <br> - Denominators are limited to $2,3,4,5,6,8,10,12,15,16$ and 20 <br> - Mixed numbers are less than 10 <br> - Vocabulary allowed in items: place value, \&vgapg. | Put the numbers in order from least to greatest. <br> Click and drag each number into the inequality. $\square$ $<\square<$ $\square$ <br> 0.85 <br> $\frac{5}{10}$ <br> 0.05 <br> (and) <br> Five points are shown on a number line. <br> Between which 2 points is $\frac{7}{16}$ located? <br> A. $J$ and $K$ <br> B. $K$ and $L$ <br> C. $L$ and $M$ <br> D. $M$ and $N$ <br> Modified Example <br> Tony recorded the money he spent each week in a table. <br> Tony's Spending <br> What is the greatest amount of money Tony spent in a week? A. $\$ 26.06$ B. $\$ 19.47$ C. $\$ 26.13$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |


Strand


| Strand | Standard | No. | Benchmark ( $5^{\text {th }}$ Grade) | Sampler Item |
| :---: | :---: | :---: | :---: | :---: |
|  | Use properties <br> of arithmetic to <br> generate <br> equivalent <br> numerical <br> expressions and <br> evaluate <br> expressions <br> involving whole <br> numbers. <br> MCA <br> $\mathbf{2 - 3}$ Items <br> Modified <br> MCA <br> $\mathbf{1 - 2 ~ I t e m s ~}$ | 5.2.2.1 | Apply the commutative, associative and distributive properties and order of operations to generate equivalent numerical expressions and to solve problems involving whole numbers. <br> (3) <br> For example: Purchase 5 pencils at 19 cents and 7 erasers at 19 cents. The numerical expression is $5 \times 19$ $+7 \times 19$ which is the same as $(5+7) \times 19$. <br> Item Specifications <br> - Expressions may not contain nested parentheses <br> - Items must not have context <br> - Vocabulary allowed in items: expression, \&vgapg. | An expression is shown. $4+3(6+10) \div 2$ <br> What is the value of the expression? A. 16 B. 26 C. 28 D. 56 <br> Modified Example Solve. $\frac{3 \times(1+5)}{2}$ A. 4 B. $7 \frac{1}{2}$ C. 9 |
|  | Understand and interpret equations and inequalities involving variables and | 5.2.3.1 | Determine whether an equation or inequality involving a variable is true or false for a given value of the variable. <br> (2) <br> For example: Determine whether the inequality $1.5+x<10$ is true for $x=2.8, x=8.1$, or $x=9.2$. <br> Item Specifications <br> - Allowable symbols: < and > <br> - Items must not have context <br> - Vocabulary allowed in items: inequality, \&vgapg. | Which value makes the equation $5 b+15=30$ true? A. $b=3$ B. $b=9$ C. $b=10$ D. $b=75$ |
|  | whole numbers, and use them to represent and solve real-world and mathematical problems. <br> MCA <br> 4-6 Items <br> Modified MCA <br> 3-4 Items | 5.2.3.2 | Represent real-world situations using equations and inequalities involving variables. Create real-world situations corresponding to equations and inequalities. <br> For example: $250-27 \times a=b$ can be used to represent the number of sheets of paper remaining from a packet of 250 sheets when each student in a class of 27 is given a certain number of sheets. <br> Item Specifications <br> - < and > symbols are allowed <br> - Vocabulary allowed in items: inequality, \&vgapg. | Yesterday, Jamal read 17 pages in his book. Today, he read more pages than he read yesterday. Which inequality shows $p$, the number of pages Jamal could have read today? <br> A. $p<17$ <br> B. $p \leq 17$ <br> C. $p>17$ <br> D. $p \geq 17$ <br> Modified Example <br> Miguel has 64 pencils in boxes. <br> There are 8 pencils in each box. <br> Which equation shows $b$, the number of boxes Miguel has? <br> - A. $64-8=b$ <br> - B. $64 \times 8=b$ <br> C. $64 \div 8=b$ |







