$4^{\text {th }}$ Grade MCA3 Standards, Benchmarks, Test Specifications \& Sampler Questions

	Standard	No.	Benchmark (4 ${ }^{\text {th }}$ Grade)	Sampler Item
Number \& Operation MCA III 18-22 Items	Demonstrate mastery of multiplication and division basic facts; multiply multidigit numbers; solve real-world and mathematical problems using arithmetic. MCA III 8 - 10 Items	4.1.1.1	Demonstrate fluency with multiplication and division facts. Item Specifications - Factors are limited to 1-9 - Vocabulary allowed in items: quotient "and vocabulary given at previoius grades" (\& vgapg).	There are 35 students going on a class trip. The students ride in vans. There are 7 students riding in each van. How many vans are needed to take all the students? A. 4 B. 5 C. 6 D. 7
		4.1.1.2	Use an understanding of place value to multiply a number by 10,100 and 1000. Item Specifications - Numbers multiplied by 10,100 and 1000 may contain at most, 2 digits - Numbers must be whole numbers - Vocabulary allowed in items: vgapg	A truck has 50 boxes of jump ropes. Each box contains 100 jump ropes. How many jump ropes are on the truck? A. 50 B. 500 C. 5,000 D. 50,000
		4.1.1.3	Multiply multi-digit numbers, using efficient and generalizable procedures, based on knowledge of place value, including standard algorithms. Item Specifications - Items will contain multiplication of a one- or two-digit number by a two- or three-digit number - Numbers must be whole numbers - Items must not have context - Vocabulary allowed in items: factor \& vgapg.	
			Estimate products and quotients of multi-digit whole numbers by using rounding, benchmarks and place value to assess the reasonableness of results. For example: 53×38 is between 50×30 and 60×40, or between 1500 and 2400 , and $411 / 73$ is between 5 and 6 . Item Specifications * Assessed within 4.1.1.5	No Sampler Item
		$\text { 4.1.1.5 }{ }^{\mathrm{u}}$	Solve multi-step real-world and mathematical problems requiring the use of addition, subtraction and multiplication of multi-digit whole numbers. Use various strategies, including the relationship between operations, the use of technology, and the context of the problem to assess the reasonableness of results. Item Specifications - Solutions must be less than 100,000 - Vocabulary allowed in items: operation, strategy, solve \& vgapg.	A camping group bought 15 sleeping bags that cost \$42 each and a tent that cost $\$ 160$. What was the total cost of the sleeping bags and the tent? A. $\$ 217$ B. $\$ 630$ C. $\$ 790$ D. $\$ 2,442$

	Standard	No.	Benchmark (4 ${ }^{\text {th }}$ Grade)	Sampler Item
		4.1.2.7	Round decimals to the nearest tenth. For example: The number 0.36 rounded to the nearest tenth is 0.4 . Item Specifications - Numbers must be less than 500 - Decimals may be given up to thousandths - Vocabulary allowed in items: decimal \& vgapg.	What is 9.582 rounded to the nearest tenth? A. 9.5 B. 9.58 C. 9.6 D. 10
Algebra MCA III $8-10$ Items	Use inputoutput rules, tables and charts to represent patterns and relationships and to solve real-world and mathematical problems. MCA III 4 - 5 Items	4.2.1.1	Create and use input-output rules involving addition, subtraction, multiplication and division to solve problems in various contexts. Record the inputs and outputs in a chart or table. For example: If the rule is "multiply by 3 and add $4, "$ record the outputs for given inputs in a table. Another example: A student is given these three arrangements of dots: Identify a pattern that is consistent with these figures, create an input-output rule that describes the pattern, and use the rule to find the number of dots in the $10^{\text {th }}$ figure. Item Specifications - When creating a rule from pairs, 3 input-output pairs must be given; pairs are not required to be consecutive - Output should not exceed 100 - Vocabulary allowed in items: vgapg	A table is shown. What rule was used to make the table? A. $g=2 f$ B. $g=\frac{f}{2}$ C. $g=f+2$ D. $g=2 f+2$
	Use number sentences involving multiplication, division and unknowns to represent and solve real-world and mathematical problems; create real- world situations corresponding to number sentences. MCA III $\mathbf{4} \boldsymbol{- 5}$ Items	4.2.2.1	Understand how to interpret number sentences involving multiplication, division and unknowns. Use real-world situations involving multiplication or division to represent number sentences. For example: The number sentence $a \times b=60$ can be represented by the situation in which chairs are being arranged in equal rows and the total number of chairs is 60 . Item Specifications - Numbers must be less than 100 - Variables, boxes or blanks may be used to represent unknown numbers - Vocabulary allowed in items: variable \& vgapg.	Which equations are true when $n=12$? Click on the equations you want to select. 12 \qquad $5=17+43$ Which symbol makes the equation true? A. + B. - C. \times D. \div
		4.2.2.2	Use multiplication, division and unknowns to represent a given problem situation using a number sentence. Use number sense, properties of multiplication, and the relationship between multiplication and division to find values for the unknowns that make the number sentences true. For example: If $\$ 84$ is to be shared equally among a group of children, the amount of money each child receives can be determined using the number sentence $84 \div n=d$. Another example: Find values of the unknowns that make each number sentence true: $\begin{aligned} & 12 \times m=36 \\ & s=256 \div t . \end{aligned}$ Item Specifications - Numbers must be less than 100 - Variables, boxes or blanks may be used to represent unknown numbers - Vocabulary allowed in items: variable \& vgapg.	Robert has 54 pencils. He has 1 box of pencils and 3 packages of pencils. The box has 24 pencils. Which equation can be used to find p, the number of pencils in each package? A. $p=54+3 \times 24$ B. $24=54+3 \times p$ C. $54=3+24 \times p$ D. $54=24+3 \times p$

